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LE’lTER TO THE EDITOR 

Uniqueness of limit cycles of generalised Lienard systems and 
predator-prey systems 

Xun-Cheng Huang 
Department of Mathematics, Statistics and Computer Science, Marquette University, 
Milwaukee, WI 53233, USA 

Received 6 April 1988 

Abstract. In this letter, another interesting example of how mathematical methods in 
physics can be applied to the area of ecology is presented. By using a theorem which first 
appeared in a Russian paper in 1958 for a generalised Lienard system, a uniqueness theorem 
of limit cycles of a predator-prey system, which includes Lotka-Volterra, Gause and other 
systems as special cases, is obtained. Several examples show that the theorem is very useful 
in dealing with the uniqueness problem of limit cycles for certain ecological systems. 

The problem of limit cycles is interesting both in physics and in mathematics. This 
concept first appeared in the very famous papers by Poincari (1881,1882, 1885,1886). 
Then in 1926, van der Pol proposed an equation in the study of a self-sustained 
oscillation occurring in a vacuum tube circuit and showed that the closed orbit in the 
phase plane of the equation is a limit cycle as considered by Poincari. After this 
observation, the existence, non-existence, uniqueness and other properties of limit 
cycles were studied extensively by mathematicians and physicists. By the 1950s, a lot 
of mathematical models from physics, engineering, chemistry, biology, economics, etc, 
were displayed as plane autonomous systems with limit cycles. Therefore, the problem 
of limit cycles is very important and has attracted the attention of more and more 
mathematicians, physicists and other scientists. Even in the famous 23 problems of 
Hilbert, you can find a place for limit cycles (the second part of the sixteenth problem: 
find the maximum number of limit cycles of all quadratic differential equations). 

For the existence and non-existence of limit cycles, there are some old and widely 
applied results such as the Poincari-Bendixson theorem, Bendixson criterion and 
Dulac criterion (see, for example, Lefschetz 1963). But for the uniqueness problem, 
the situation is more complicated. While existence or non-existence can be shown by 
rough estimates or some topological method, the latter needs much more exact esti- 
mation. 

The uniqueness of limit cycles of the Lienard equation has been proved under 
certain assumptions by several authors, for example, Lienard (1928), Levinson and 
Smith (1942) and Sansone (1949). In 1958, Zhang published a paper in Russian and 
suggested another method to prove the uniqueness of limit cycles of a generalised 
Lienard system. The complete proof of Zhang’s theorem has recently been given by 
him (Zhang 1986). 

In this letter, we propose a general predator-prey system which consists of the 
Lotka-Volterra system, Gause system, etc as special cases and, by changing variables 
and utilising Zhang’s theorem, we prove the uniqueness of limit cycles for the general 
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predator-prey system. This is, I believe, another good example of how mathematical 
methods in physics can be applied to the area of ecology. Several examples are given 
to show that our theorem is very useful in handling the uniqueness problem of limit 
cycles for certain ecological systems. 

The Lienard equation (Lienard 1928) 

d2x/dt2 +f(x)  dx/dt  + g(x)  = 0 

can be transferred to the equivalent system 

d x / d t = - y - F ( ~ )  

dy/dt = g(x)  

where 

F ( x )  = l X f ( x )  dx 
0 

by the Lienard transformation 

(3 )  

y = -dx/dt - F(x). (4) 

Obviously, when g(x)  = x,f(x) = E(X’ - l ) ,  ( E  > 0), equation (1) reduces to the van 

(5) 

der Pol equation 

d2x/dt2 + &(x2 - 1) dx/dt + x = 0 ( E  > 0) 
which has a unique limit cycle for every E > 0. 

Zhang (1958) generalised (2) to the following: 

dx/dt  = -cp(y)  - F ( x )  

dy/dt = A x )  

and proved (Zhang 1986) the following theorem. 

Theorem A. Assume that 
(i) g(x)  satisfies the Lipschitz condition on every finite interval, xg(x)>O, x f O ,  

G(+m) = G(-CO) = +CO, where G(x)  = 5,” g(x)  dx; 
(ii) F’(x) is continuous, F‘(x)/g(x) is non-decreasing for x in (-CO, 0) and (0, 

+CO) and F’(x)/g(x) # constant in a neighbourhood of x = 0; 
(iii) cp(y) satisfies the Lipschitz condition on every finite interval, ycp(y) > 0, y # 0, 

cp(y) is non-decreasing, cp(-co) = -m and cp(+m) = +a; cp(y) has right and left deriva- 
tives at x=O which are non-zero in the case F’(0) = O .  

Then, system (6) has at most one limit cycles, and if it exists it is stable. 

We consider the system 
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and Gause-tape systems: 

dx/dt = xg(x) - y p ( x )  
(9) 

d y l d t = y ( - r  +dX)) 
and many other systems (see, for example, Freedman 1980). Also, if we let p(y)  be 
constant, ~ ( y )  = -cp(y) and d(x) = -1, system ( 7 )  is reduced to (6). So, in some sense, 
we can call (7) a more generalised Lienard system. 

Theorem 1 .  Suppose that 

We want to prove the following uniqueness theorem. 

(i)  all the functions in (7)  are in C ' ( R )  and F'(x) is in C ( R ) ;  
(ii) 4(0) = ~ ( 0 )  = p ( 0 )  =0, 4'(x) > 0, $'(x) > 0 for x > 0, p'(y) > 0, ~ ' ( y )  > 0 for 0 

(iii) there exists x* > 0 such that $(x*) = 0; also, there exists k >  x* such that 

(iv) -F'(x)~(x)/$(x) is non-decreasing for -a< x < x*, x* < x  < +CO. 

Then, system (7)  has at most one limit cycle, and if it exists it is stable. 

Proof: Since ~ ( y )  is strictly increasing, ~ ( 0 )  = 0, T(+CO) = +CO and F(x*) is finite, 
there exists y* > 0 such that (x*, y*) is the unique positive equilibrium point. 

for y > 0 and T(+CO) = +CO; 

F ( k ) = O  and (x-k)F(x)<O for x#k; 

By changing variables, 
x=5(u)+x* 

Y = dV)+Y* 
system (7) can be transferred to 

Let 

and 

Since 4 and p E C ' ( R ) ,  there do exist 5 and q satisfying (12) and (13). Thus we have 
du/d t  = - [ T ( ~ ( v )  + y * )  - y*] - [ - F ( [ (  u)+x*) + y*] = -cp( U )  - A ( u )  

du /d t=  $(((u)+x*)=g(u). (14) 

Now, let us check if the conditions of theorem A are satisfied. 
6) Since ((0) = 0, ('(U) = 4 ( ( ( u )  +x*) > 0, we have ,$( U )  > 0 for U > 0. Thus, U and 

((U) have the same sign. Then since (x - x*)$(x) > 0, 

and consequently ug( U) > 0. 
5 ( u ) $ ( 5 ( u )  + x*) = (((U) + x* - X*)4(5(U) + x*) > 0 

(ii) A'(u)  = -F'(((  U )  +x*)&'( U )  = -F'(((  U )  + x * ) ~ ( ( ( u )  +x*) 
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is continuous; 

A’( U ) / d  U )  = - F’(5(  U )  + x * ) d ( 5 (  U )  + x * ) /  $(5( U )  + x * )  

- j Y x ) d ( x ) / $ ( x )  > 0 for X * - E < x < x *  

- F ’ ( x ) d ( x ) / $ ( x )  < o  for x * < x < x * +  E 

is non-decreasing for --CO < U < 0, 0 < U < +CO; also, since 

and 

A‘( u ) / g (  U )  # constant in a neighbourhood of U = 0. 
( i i i )  Since v ( O ) = O  and v ’ ( u ) = p ( ~ ( u ) + y * ) > O ,  v ( u ) > O  for u > O .  If v , < v 2 ,  

~ ‘ ( u , ) - T ’ ( u ~ )  = p ( v ( v , ) + y * ) - p ( ~ ( u 2 ) + y * ) < 0 .  Hence ~ ’ ( u )  is strictly increasing. 
Therefore 

v ( u ) -  v(O)> v’ (O)(u-O)  

v( +a) =+Co. 

ucp( U )  = u7r( v( U )  + y * )  > 0 

cp( +CO) = 7r(7#l(+CO) + y * )  = 7r(+Co) = +CO 

which implies 

So we have 

and cp(u), of course, satisfies the other conditions in theorem A. 
We thus complete the proof of theorem 1 .  

Following the criterion of Rosenzweig and MacArthur (1963)  and theorem 1 ,  it is easy 
to prove the next theorem. 

Theorem 2. For system (2.7) if, in addition to (i)  to (iii), 
(v) F ’ ( x * )  <0, then the equilibrium point ( x * ,  y * )  is stable. 
If, in addition to ( i )  to (iv), 
(v)’ F ’ ( x * )  > 0, then ( x * ,  y * )  is unstable and system (7) has a unique limit cycle 

which is stable. 

We now consider the various applications of this method 
( a )  The Rosenzweig-MacArthur system: 

dx/dt  = f ( x )  -Y44X, Y )  

dY/dt = -eY + kY44X, Y )  

where f ( x )  = ax - bx2,  r$(x, y )  = a x / (  1 + b x )  and a,  b, e, k are positive parameters. 
Rosenzweig and MacArthur (1963)  studied the stability of system (15) in both 

graphical and numerical ways, but they found any of their results about limit cycles 
analytically. Here we just use theorem 2 to show under certain conditions that (15) 
has a unique stable limit cycle. 

Rewrite ( 1 5 )  as 

dx ax 
dt  l + b x  

- [ ( a  - b x ) ( l +  b x ) / a  - y ]  

dy/dt = y [ - e + k a x / ( l + b x ) ] .  
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It is not difficult to see, with . r ( y ) = p ( y ) = y ,  4 ( x ) = a x / ( l + b x ) ,  $ ( x ) =  
-e  + kax/(  1 + bx)  and F ( x )  = [ a  + b(a  - l)x - b2x2] /a ,  that the assumptions in theorem 
2 are satisfied. In fact, the unique positive equilibrium point is 

x* = e / ( k a  - eb) 

y*  = 1 + eb/ (ka  -eb)  -eb /a(ka  - eb)-e2b2/a(ka  -eb)' 

provided that 

ka - eb - eb/a  > 0. 

Since F ' ( x )  = (ab  - b -2b2x) /a ,  if 

( a  - l ) ( k a  - eb) -2eb > 0 

then 

F'(x*)  = b [ ( a  - l ) ( k a  -eb)  -2eb] /a(ka  -eb)> 0. 

Furthermore, 

W ( x )  = - F ' ( x ) + ( x ) / $ ( x )  = - b[(  a - 1)x - 2bx2]/[  -e  + ( k a  - eb)x]  

and 

W ' ( x )  =[2b2(ka  -eb)x2-4eb2x2+eb(a - l ) ] / [ - e + ( k ~ - e b ) x ] ~ > O  

if (18) is true. 
Since ( 1 8 )  implies (17), we have, by theorem 2 ,  the new theorem 3. 

Theorem 3.  If ( a  - 1)( ka - eb) - 2eb > 0, then the equilibrium point ( x* ,  y*)  of system 
( 1 5 )  is unstable and the system has a unique limit cycle which is stable. 

( b )  A predator-prey system. Kazarinoff and van der Driessche (1978) studied the 
generalised predator-prey system 

dx/dt = T X (  1 - x / k )  - y x " / ( a  + x " )  

d y / d t = y [ p x " / ( a + ~ " ) - D ]  
(19) 

where r, k, a, p and D are positive constants and p > 0, n 3 1 .  
Let 

(A",  Y n )  = ( [ D U / ( P  - D)l"", (rr*./kD) [W(r*. - D)I1'" { k  - - [ D a / ( p  - D ) l ) )  

which is a equilibrium point of system (19). 
Rewriting ( 1 9 )  in the standard form: 

X" 
a + x n  

dx/dt  = - [ rX'-" ( 1 - x /  k ) (  a + x" ) - y ] 

d y / d t = y [ p ~ " / ( ~ + ~ " ) - D ]  

assumptions (i)-(iii) of theorem 1 are obviously satisfied. Since 

~ ' ( x )  = [rx ' -"( l  - x / k ) ( a  + x " ) ] '  

= r[( 1 - n ) x - " ( ~  - x / k ) ( a  + x " )  -x ' -" (a  + x n ) / k  + n( 1 - x / k ) ]  

F'(A,)=(r /kD)[ ( l  - n ) ( k - h , ) p - A , ~ ~ + n k D - n A , D ]  
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and 

W ( X ) =  - F ' ( x ) ~ ( x ) / $ ( x )  = -F ' (X)X" / [ (p  - D)x" - Du] 

- r / k  - - [ ( l -  n)ka +(n -2)ux+ kx" -2x"+l] 
( p  - D)x" - Da 

{2x2" - [ (n  -2 ) ( l -n )a+2(n+1)An]x"  r (p  - D )  W l ( x )  = 
k [ ( p  - D)x" - DUI' 

+kn[A,+(l  - ~ ) U ] X " - ' - ( ~ - ~ ) U A , , } .  

According to theorem 2,  if 

F'(A,) > 0 and W ' ( x )  2 0 for O<x<A,,A,<x< +CO 

then system (19) has a unique limit cycle which is stable. 
For example, when n = 1, if 

k > A1(p + D ) / D  = a + 2 A 1  

then 

F'( A = ( r /  kD) (  k D  - A p - A D )  > 0. 

Also 

W ( x )  = '(' - D )  [2x2-4A1x+ ( k  - a)Al] > 0 
k [  ( p  - D ) x  - DUI' 

because 

16A: - 8( k - a)Al= 8 A 1 ( 2 A 1  - k + U )  < 0. 

For the case n = 2, we have 

F'(A,) = ( r /  kD)[  k ( 2 D  - p )  - 2A2D] 

which is positive if 2 0  - p > 0,  k > 2A2D/(2D - p ) .  
Also 

W'(X) = r ( p  - D )  [2x4-6A2x'+2k(h2- u ) x ] .  k [  ( p  - D)x' - Da]' 

The discriminant of the trinomial 2x3 -6A2x + 2k(A, - a )  is positive. In fact 

A =  q 2 / 4 + p 3 / 2 1  

= k ' ( A 2 - ~ ) ~ / 4 + 3 ~ A ; / 2 1  

> 0. 

This implies that the trinomial has only one real root. Since the product of the three 
roots is - k (A2-a ) ,  the real root will be non-positive if A 2 3  a(or if D2 u p / ( l + a ) ) .  
Thus 

W'( x)  > 0 for x > o  if D 2 u p / (  1 + a )  

and from theorem 2, we have theorem 4. 

Theorem 4. For a general predator-prey system (19),  
(i)  when n = 1 ,  it has a unique limit cycle which is stable if k > a +2h,  ; 
(ii) when n = 2 ,  it has a unique limit cycle which is stable if D z  a p / ( l + a ) ,  

2 D - p > 0  and k > 2 A 2 D / ( 2 D - p ) .  
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We can remark that ( a )  the result for n = 1 in theorem 4 was obtained by Cheng 
(1981) but his argument is very tedious and ( b )  theorems 1 and 2 can be applied to 
many other systems (see, for example, Chen and Jing (1984) and Huang (1987)). 

The author would like to thank Professor Stephen J Merrill for valuable discussions. 
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